
Orbital Dynamics for the COMPLEAT IDIOT

by Alan R. Washburn

1. Introduction

Actually, a complete  idiot would have trouble with this tutorial. The real

intended audience is scientifically oriented, but pressed for time. The objective is to

provide a minimal acquaintance with the technology and terminology relevant to

Earth orbiting satellites. In spite of this mild ambition, the vocabulary expansion i n

what follows is nontrivial. Terms that are used in a special sense are italicized when

first defined – 24 of them. There is even a formula …

2. Reference system

The coordinate system used in this tutorial has its origin at the center of Earth. In

this coordinate system the Sun goes around Earth, contrary to what you may have

heard. There is actually no harm in this viewpoint, since the origin of coordinates

can always be selected to be whatever is convenient. It is true that Earth would be an

awkward origin if we were interested in the motion of other planets, since they

have complicated orbits in Earth-centered coordinates. But the planets do not

sensibly affect Earth satellites, which are the subject of interest here, so the center of

the Earth will do fine.

The problem is how to orient the x, y, and z axes. One is easy – the z axis will

point to the North Pole along Earth’s axis of rotation. We want to have a direction

for the x axis that doesn’t rotate with Earth, so that an observer could cling to the

axis frame and see all of the stars other than the Sun being stationary – an inertial

frame of reference. There are lots of such directions. The convention is to orient the
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x axis in the direction of the vernal equinox ϒ, which is by definition the direction to

the Sun on the day in Spring when day and night have the same length. Any time

you can see the constellation Pleiades, you are looking in approximately the

direction ϒ. Since ϒ is in the equatorial plane, there is a right angle between the x

and z axes. Now orient the y axis to be perpendicular to both of them, and you have

our coordinate system. You might wish to imagine a transparent sphere centered on

these coordinates, with all of the stars other than the Sun fixed to it. This is the

celestial sphere. If you sit on top of this sphere and look down at Earth, you will see

it rotating counter-clockwise on its z axis down there.

The beauty of this coordinate system is that, neglecting small perturbations that

will be described in Section 5, the orbit of any satellite is a fixed ellipse. The satellite

moves around the ellipse, but the ellipse itself remains stationary. It takes six

numbers to describe such an orbit. The six could be simply position (three numbers)

and velocity (three numbers) at some reference time, but a different set is used i n

practice and is worth getting used to. Two numbers describe the plane and direction

of rotation. A satellite’s ascending node  is the direction from the origin to the

satellite when it ascends through the equatorial plane going North. The right

ascension (RA) of the ascending node is an angle measured counter-clockwise (as

viewed from the North Pole) from the x axis to the ascending node, an angle

between 0 and 360 degrees. The other number is the angle in degrees between the

equatorial plane and the plane of rotation, the orbit’s inclination (IN). For prograde

(counter-clockwise) orbits, 0≤IN<90. For retrograde (clockwise) orbits, 90<IN≤180.

All orbits that go over the North Pole are polar, and have IN=90. Orbits with IN=0

or IN=180 are all equatorial, but the first is prograde and the second retrograde.

Figure 1 illustrates RA and IN for a circular, prograde orbit. In this Earth-centered

coodinate system, the Sun’s orbit is nearly circular and prograde with IN=23.5 and

RA=0.
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Figure 1.  The right ascension (RA) and inclination (IN) of a satellite’s orbit

3. Kepler’s Laws

As Kepler discovered and as Isaac Newton first showed rigorously in 1685, the

solution of the two body problem is that the path of body A with respect to body B is

a conic section. When the conic section is a parabola or hyperbola, body A “escapes”

and never returns; otherwise, body A (the satellite) repeatedly travels around an

ellipse with one focus at body B (Earth, in the present application). This is Kepler’s

first law. Three additional numbers are required to determine this ellipse within the

plane already determined by RA and IN. Systems for doing this vary – the details are

not important for the moment. The sixth and last number locates the satellite on

the ellipse at some standard time. After the satellite is located on the ellipse, physics

takes over and the satellite rotates round and round Earth indefinitely.
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Kepler’s second law states that the time required to go from one orbital position

to another is proportional to the area of the circular wedge formed by the line

between Earth and the satellite. When the line is long, the satellite moves slowly.

Therefore a satellite moves fastest at perigee (closest point to Earth) and slowest at

apogee (farthest point).

Kepler’s third law states that the period (T) of the orbit is related to its size in that

T2 is proportional to r3, where r is the semimajor axis of the ellipse (half of its largest

diameter). For satellites whose mass is negligible compared to that of Earth, the exact

relationship is that

  
T

r

gR
= 2

3

2π , 

where

g = gravitational attraction at Earth’s surface (.00981 km/sec2)
R = radius of Earth (6378 km).

For satellites in circular orbit, r is just the radius of the orbit. For example, a satellite

in circular orbit 570 km above Earth would have r=6948 km and T=5760 seconds (96

minutes). If atmospheric interactions are ignored, a satellite with r=R would be

feasible and would have a period of 84 minutes (it would also have a speed of 7.9

km/sec, providing a real thrill to observers as it skims Earth’s surface). In practice

most satellites stay at least 200 km above Earth’s surface to avoid the atmosphere, so

think of an hour and a half as a lower bound on any satellite’s period. The satellite’s

mass does not affect the orbit as long as it is small compared to Earth – the formula

works for the Moon, but not for the Sun.

Earth rotates on its axis once every 23 hours and 56 minutes, the length of a

sidereal day. Remember that the Sun is moving around Earth in a prograde orbit,

and that a (solar) day is the length of time required for a given point on Earth to

have the Sun overhead again. After Earth has rotated counterclockwise once, it still
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needs another 365th of a day (about 4 minutes) to catch up to the Sun. A prograde

orbit with a period of one sidereal day (circular or not) is geosynchronous ; that is,

the satellite’s Earth track will be the same every day. Circular, geosynchronous orbits

have a radius of about 42,164 km.

A circular, geosynchronous orbit with inclination IN=0 will appear to hover

above a point on the Equator. These orbits are geostationary. Specifying the fixed

point on the Equator completely defines the location of a geostationary satellite for

all time, so there can be only one geostationary orbit for every longitude.

Geostationary orbits are popular for communication satellites because the

corresponding ground antennas don’t have to move much. Fortunately, since the

circumference of the geostationary orbit is 267,000 km, there is room for quite a few

satellites. From its position at 5.6 Earth radii above the surface, a single geostationary

satellite can see as far as 81 degrees north or south latitude – almost a complete

hemisphere. Three or four carefully spaced satellites can cover most of the Earth,

with the missing parts being polar or ocean regions where very few people live. This

is all very convenient. On Jupiter, the corresponding orbit would be only 1.25 radii

above the surface, and would consequently not be visible beyond a latitude of 64

degrees. On our sister planet Venus, which hardly rotates, the orbit would be

inconveniently far away at a radius of 1.5 million km (244 radii). In yet another way,

Earth turns out to be a good place for Man.

4. Effects of Earth’s rotation

Of the six satellite parameters, only RA and IN would be of much use if Earth did

not rotate. These two alone would determine the track of the satellite on Earth, with

the other four parameters affecting only revisit time and the velocity and altitude of

the satellite as it passes over. This would have the advantage of conceptual

simplicity – most satellite coverage problems could be investigated with a globe and
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some means of drawing great circles on it. But the operational disadvantages of a

nonrotating Earth would be immense, even putting aside the fact that all life would

die out. There would not be any geostationary orbits, for example, since one could

not count on the Earth to expose itself by rotating under the satellite. In spite of the

conceptual complications, Earth’s rotation is basically a Good Thing.

The coverage pattern achieved by a satellite on a rotating Earth depends on the

relationship between the satellite’s period T and Earth’s sidereal period E. The ratio

Q≡E/T is the repetition factor. The orbit is synchronous if Q=1. If Q=2, as in the

Global Positioning System, each satellite makes two complete orbits in one sidereal

day. A satellite with Q=14/3 would repeat itself every 3 sidereal days after 14

revolutions. The ground track of a circular satellite with Q=15 and IN=63 is shown

in Figure 2. This satellite appears to weave a kind of “basket” over Earth in the

process of making its 15 daily orbits, revisiting Norfolk and every other point on its

track once a day. On account of Earth’s rotation, a single satellite can come

reasonably close to every point on Earth once a day, within the latitudes that its orbit

is designed to cover. If the mesh of the basket is too coarse, use a second satellite

offset by 360/(15x2)=12 degrees of RA. If the revisit time is too large, put multiple

satellites in the same orbit.

If Q is irrational, then the ground track never repeats! Even when the ground

track repeats, some remarkably odd shapes are possible. Figure 3 shows the track of a

circular synchronous satellite with IN=45. The track is confined to the predictable

latitudes, but moves around in a figure 8 pattern. Figure 4 shows the track of an

elliptic orbit with Q=2. In Figure 4, apogee occurs twice a day at the two northern

cusps; the closeness of the hourly hashmarks means that the satellite is moving

slowly there, as is always true in elliptical orbits. There are many Russian Molniya

satellites with orbits of this type.
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Figure 2. Ground track of a satellite with repetition factor Q=15
and inclination IN=63.  Norfolk is viewed once a day.
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Figure 3.  Ground track of a circular synchronous orbit with IN = 45°

Figure 4.  Ground track of an elliptical orbit with repetition factor Q=2
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5. Perturbations

Due to its rotation, Earth is a bit fat around the Equator. As a result, the motion

of a satellite is perturbed from what it would be if Earth were a perfect sphere. The

effect is the same one that applies to a spinning top when Earth’s gravity tries to

make the axis of spin horizontal. Instead of falling down, the axis of the top’s

rotation precesses about the vertical. Now, a satellite is basically just a big top, and

the bulge at the Equator continually tries to move the satellite’s axis of rotation into

the Equatorial plane. The reaction of the satellite is that its axis of rotation precesses

about the North Pole; the inclination of the orbit remains constant, but the Right

ascension (RA) changes slowly with time. RA decreases for prograde orbits and

increases for retrograde orbits, with polar orbits being unaffected. The magnitude of

this drift in RA is on the order of several degrees per day, depending on the altitude

and inclination of the satellite, so the effect on Earth coverage can be substantial

over only a few days. Satellite tracking programs invariably account for it.

Orbit precession is an analytic annoyance, but a clever orbit designer can put

even this phenomenon to use. Recall that a synchronous orbit passes over the same

point on Earth once every sidereal day. If that point is in sunlight at one time, it will

be in darkness six months later because of the Sun’s orbit around Earth. This can be

awkward if photography is involved – it would be better if the satellite could pass

over a given point at the same time(s) every day. Precession can be used to make

that happen. If the satellite is in a retrograde orbit, then its axis of rotation will move

counterclockwise around the North Pole, just like the Sun. If the axis makes exactly

one rotation per year, then the orbit will Sun-synchronous, the desired effect.

Satellites in near-polar retrograde orbits are usually put there with this effect i n

mind. They are likely to be in low orbits, since the precession effect dies out quickly

with altitude.
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Another perturbation that must be allowed for is the inexorable effect of friction,

particularly for satellites in low orbit. Sooner or later, every such satellite will spiral

inward until it finally crashes on the surface of Earth, if it hasn’t burned up already

in the atmosphere. In the meantime, the six parameters of the orbit that

approximates the satellite’s actual track must be periodically adjusted.

6. Statistics about satellites

Satellite databases always include RA, IN, three elliptical parameters, one

parameter to locate the satellite on the ellipse, and possibly other information. The

three elliptical parameters are:

eccentricity (EC) This is half of the ratio of the distance between foci to the

semimajor axis. Necessarily 0≤EC<1. EC is zero for a circular orbit. As EC approaches

1, a small perturbation could turn the ellipse into a parabola, in which case the

satellite would never come back.

argument of perigee (AP) This is the angle from the ascending node to the

perigee, measured in degrees within the plane of rotation. Thus 0≤AP≤360.

mean motion (MM) This is the number of revolutions per day. MM is 1.0027 for

a synchronous satellite. The reciprocal of MM is the period T in days.

The sixth parameter locates the satellite on the ellipse at some reference time.

The true anomaly is the angle from perigee to the satellite (satellite terminology has

inherited terms like “argument” and “anomaly” from the ancient science of

astronomy — both of these are names for angles). The mean anomaly (MA) is the

angle from perigee to where the satellite would be if it moved around its orbit at a

constant angular rate, which it really doesn’t. MA is essentially a measure of time

since perigee, so it is used in preference to true anomaly in spite of its odd

definition.



11

In theory a single reference time (1957, say) would do for all satellites, but i n

practice each satellite has its own epoch  (EP), a time in the hopefully recent past at

which the other six parameters are asserted to have been accurate. Of the six

parameters, only MA should depend on EP in theory. In practice the other five also

have a slight dependence on account of perturbations.

Data for various collections of satellites can be downloaded from the Internet. A

good starting location is http://emerald.feldberg.brandeis.edu/~progrmer/

satellite/index.html. The most common format is NASA format where each

satellite gets three lines. In that format EP is in the second line, along with other

data that includes the last two digits of the year of launch (YR). The third line

includes IN, RA, EC, AP, MA, and MM, in that order, except that EC is given as an

integer that should be multiplied by 10-7. NASA format is invariably called two-line

format, apparently with the idea that the first line, which contains only the

satellite’s name, should not be counted. The six lines below describe OSCAR 10 and

ANIK C2 (TELESAT-7):

OSCAR 10
1 14129U 83058B   96046.56186910 -.00000124  00000-0  10000-3 0  4034
2 14129  26.3643 223.9075 5983094 351.0706   1.5442  2.05879267 67343
ANIK C2 (TELESAT-7)
1 14133U 83059  B 96056.22874657 -.00000269  00000-0  10000-3 0  6892
2 14133   3.6497  66.1128 0001290 248.7237 206.0228  1.00270375 16217

Lines labelled 1 and 2 have the following format (elements defined above are shown
in [ ]):

Column Description of element in line labelled 1
 01-01 Line Number of Element Data
 03-07 Satellite Number
 10-11 International Designator (Launch year) [YR]
 12-14 International Designator (Launch number of the year)
 15-17 International Designator (Piece of launch)
 19-20 Epoch Year (Last two digits of year) [EP]
 21-32 Epoch (Julian Day and fractional portion) [EP]
 34-43 First Time Derivative of the Mean Motion divided by 2

or Ballistic Coefficient (Depending of ephemeris type)
 45-52 Second Time Derivative of Mean Motion divided by 6.
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 54-61 BSTAR drag term if GP4 perturbation theory was used.
Otherwise, radiation pressure coefficient.

 63-63 Ephemeris type
 65-68 Element number (counts the number of updates)
 69-69 Check Sum (Modulo 10)

Column Description of element in line labelled 2
 01-01 Line Number of Element Data
 03-07 Satellite Number
 09-16 Inclination [IN]
 18-25 Right Ascension of the Ascending Node [RA]
 27-33 Eccentricity (times 1E7) [EC]
 35-42 Argument of Perigee [AP]
 44-51 Mean Anomaly [MA]
 53-63 Mean Motion [MM]
 64-68 Revolution number at epoch
 69-69 Check Sum (Modulo 10)

NASA format does not include a field for the satellite’s purpose, owner, or

launcher, but such information can be found in other databases. The key field is the

satellite number that is shown on both lines in the two-line format. Every satellite

has a unique number, and it never changes.

You may have access to a file SAT.DAT that was created by downloading the 3530

satellites that were orbiting in March, 1996, and processing the data so that each

satellite has a single line in SAT.DAT. The eight columns show

(NUM,YR,IN,RA,EC,AP, MA,MM) for each satellite, where NUM is the satellite

number. For example, the line corresponding to OSCAR 10 is

 14129 83   26.3643  223.9075  .5983  351.0706    1.5442  2.05879267

SAT.DAT is an ASCII file that should be readable by most statistical software, so

statistical measures of various kinds can be derived from it.


